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Lattice models for the collapse of branched polymers 

S. Flesia 

Department of Physics, King's College London, London WC2R 2LS, UK 

Randomly branched polymers in dilute solution in a good solvent can be modelled by lattice 
animals (i.e. connected clusters). Introducing attractive monomer-monomer interactions 
between nearest-neighbour sites causes the branched polymer to become more compact and a 
collapse transition, analogous to that in linear polymers, is expected to occur at low tempera- 
ture. This model, and alternative lattice models for the collapse transition of branched poly- 
mers, will be described. In each of the models, the collapse is driven by some kind of near- 
neighbour fugacity, cycle fugacity or perimeter fugacity. In two and three dimensions and on 
several lattices, analytical results for the free energy and numerical results, using exact enu- 
meration data, for the free energy and for the specific heat, will be presented with estimates of 
the cross-over exponent ~b and the collapse temperature To. 

1. Introduction 

Just as linear polymers in dilute solution can be modelled by self-avoiding walks 
on lattices, randomly  branched polymers in dilute solution can be modelled by lat- 
tice animals. In this system (one polymer in a solvent) there are two main  interac- 
tions: monomer - so lven t  (q)  and m o n o m e r - m o n o m e r  (e2) interaction. The 
tempera ture  parameter  can be writ ten as 3 = e /kT ,  where k is the Bol tzmann con- 
stant and e I (£2) is the interaction parameter .  Intuitively e 1 @2) describes the quali ty 
of  the solvent. In a "good  solvent" the polymer-solvent  attractive interactions are 
highly favoured,  ex >> 0, hence the polymer is an extended r andom animal (swol- 
len phase). In a "poor  solvent" the attractive interactions between monomers  are 
highly favoured,  e2 >> 0, and the polymer shrinks to a compact  globule state when 
the temperature  is lowered below a critical temperature  Tc (compact  or  collapsed 
phase). It is believed that  at temperature  Tc the polymer undergoes a collapse t ran-  
sition similar to that  of  linear polymers [1-4]. Al though for branched polymers  
the existence of  this transit ion is not  proved, there is substantial numerical  evidence 
for its existence [5-13]. Another  interesting case that  can be treated, is when the 
interaction between monomers  and solvent is strong and repulsive, el < 0, such that  
the polymer is forced to a compact  phase by the repulsive action of  the solvent. 
Nevertheless, the aim of  this paper  is only to discuss a number  of  related, one-vari-  
able, lattice models in which the collapse is driven by some kind of  nearest-neigh- 
bour  or cycle or perimeter  fugacity and to point  out the relations between the 
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models. The models have been studied on trees [12], lattice animals [13] and c-ani- 
mals [14], on several lattices in both two and three dimensions with the aid of new 
exact enumeration data. A generalised two variables model including all these 
interactions has been recently studied [15]. 

2. Models  of  b ranched  polymers  

Let us recall some definitions and terminology. 
An example of a lattice animal on the square lattice is shown in fig. 1. It has: 

eight sites (N), eight bonds (B), one cycle (C), two pairs of nearest-neighbour sites 
not directly connected by a bond, i.e. contacts (K), ten pairs of nearest-neighbour 
sites ( P ) ( P  = B + K) ,  fourteen bond percolation perimeter  bonds (Q) and twelve 
solvent per imeter  bonds (S), i.e. pairs of bonds which join an occupied site to a near- 
est-neighbour site which is unoccupied (S = Q - K). There exist three relations 
connecting these quantities, 

C = B - N + 1 Euler's relation, (2.1) 

Q = Z N  - 2 B -  K Bond percolation perimeter, (2.2) 

S = Z N  - 2B - 2K  Bond solvent perimeter, (2.3) 

where z is the coordination number. For a hypercubic lattice Z = 2d (d is the 
dimension of the system). An animal may be weakly embedded or strongly 
embedded (in this case K = 0) in the lattice and the size of an animal may be mea- 
sured either by its site content, N, or its bond content, B. If the number of cycles is 
zero (C = 0) it is called a tree, and if it has a prescribed number, C, of cycles it is 
called a c-animal. 

Six underlying models are identified depending on whether the animals are 
weighted by e ~c, e ~K, e ~s, e °e, e ~s, e ~Q, where/3 is proportional to the inverse tem- 
peratu_re and e ~ is the appropriate fugacity; the model weighted by e ~Q is not consid- 
ered in this paper (see ref. [15]). Each model has four different realizations 
(strongly or weakly embedded, site or bond counting). The resulting twenty models 
can be denoted by lower case letters (c-, k-, b-, p-, s-) when the animals are weakly 
embedded in the lattice and by upper case letters C-, K-, B-, P-, S-) when they are 
strongly embedded. A letter is primed when size is being measured by bond con- 
tent. 

I 
Fig. 1. Animal on the square lattice. 
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Let w be a generic name for the model, (w = K, k, C , . . . )  and u a generic name 
for the size content (u = N, B). The canonical partition function of the w-model is 
then: 

Zu(/3, w) --- Z a(u, w)e ~w , (2.4) 
W 

where a(u, w) is the number of weakly or strongly embedded animals with u sites 
or bonds, and w contacts or cycles or perimeter or . . . .  

Fortunately, several of those models can be proved to be equivalent. Five of the 
above models are trivial in the sense that the specific heat is identically zero. They 
are: the K-model and the K'-model, because K = 0 for strongly embedded animals, 
so the partition function is a constant and consequently the specific heat is zero; 
the br-model, in fact, because of the bond counting, the fugacity per bond is a con- 
stant which can be taken off the sum, consequently the limiting free energy is a con- 
stant independent of/3 so that the specific heat is zero; finally, the U-model and 
the B'-model are identical because they differ only by K which is zero for strongly 
embedded animals, and they are trivial for the same reason as the b/-model. Some 
of the other models are equivalent: the P-model and the B-model are identical 
because P --- B for strongly embedded animals, and they are both equivalent to the 
C-model; in fact from the relation (2.1) the partition function of the B-model can 
be written as 

ZN(/~,B)~--- Z a(N'B)e~B= eft(N-l) Z a(N, C)e~C= efl(N-1)ZN(]~ , C),  (2.5) 
B C 

where ZN (~, C) is the partition function of the C-model, so they have the same spe- 
cific heat. Using the same argument it is easy to prove that the b-model is equiva- 
lent to the c-model. Finally thep'-model is equivalent to the/d-model. Hence there 
are eleven independent non-trivial models, which may be taken to be 

C, C', c, c', k, k',p, S, S', s, s ~ . (2.6) 

Thep-model will not be considered in this paper. So there are the three main kinds 
of lattice model depending on whether the collapse is driven by some kind of near- 
neighbour contacts (K) or cycle (C) or bond solvent perimeter fugacity (S). 

The models [11] are being studied for animals, c-animals and trees, on several lat- 
tices in both two and three dimensions with the aid of new exact enumeration 
data. The only models studied by other workers are the C-model and the C-model. 
In fact Derrida and Herrmann [5] studied, with the transfer matrix method, the P- 
model which is equivalent to the C-model, Dickman and Schieve [6,7] and Lam 
[8,9] studied, with the Monte Carlo method, the B-model which is also equivalent 
to the C-model, Chang and Shapir [10] studied the C-model and the c~-model. 

In the contact model only an attractive (e2 > 0) monomer-monomer  interaction 
between nearest-neighbour contacts is introduced to induce the collapse of the lat- 
tice animal at low temperature. Intuitively, an attractive interaction between 
monomers causes a swollen polymer to contract into a compact structure as the 
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number of contacts is increased. In this model, of course, only weakly embedded 
animals can be considered. 

In the cycle model the collapse is driven by an increasing number of cycles 
(cycle fugacity) and, hence is only relevant to an animal model. This model seems 
less appropriate than the contact model to describe the collapse transition in poly- 
mers. Lubensky and Isaacson [16] suggested that cycles are relatively unimportant 
in determining the universality class and the number of cycles is not a relevant para- 
meter; Knezevi6 and Vannimenus [17] showed that the existence of loops are irrele- 
vant as far as large-scale properties are concerned and several other numerical 
studies have supported this proposal [18]. This has led to trees being considered as 
useful model of branched polymers. However, it is also a good model of collapsing 
branched polymers and we will show in sections 4.2 and 4.3 that for a collapsing 
branched polymer with contact or bond solvent fugacities, trees are in the same uni- 
versality class. 

The solvent model describes the interaction between polymer and solvent. This 
time the collapse is driven by the repulsive action of the solvent on the polymer. The 
polymer is modelled by an animal or tree, the solvent by the unoccupied lattice 
sites, and the repulsive action on the polymer by the solvent is represented by the sol- 
vent perimeter bonds. We will see later that this model is related to the other two. 

3. Contact  model  in trees 

3.1. F R E E  E N E R G Y  

This model has been studied by Gaunt and Flesia [12], so only a short descrip- 
tion will be presented. It must be stressed that since the number of sites (N) and the 
number of bonds (B) are trivially related by the relation (2.1); in the case of trees 
and c-animals, it is irrelevant whether the size of the tree is classified by its site or its 
bond content. So, the canonical partition function of the k-model in trees is 

ZN(/3, k) --- Z a(N'K)eOK' (3.1) 
K 

where a(N, K) is the number of weakly embedded trees with N sites and K con- 
tacts./3 i> 0 corresponds to an attractive interaction (e2 > 0) and/3 ~< 0 to a repulsive 
interaction (c2 < 0). The reduced free energy is defined by 

FN(/3) = U -1 logZu(/3) (3.2) 

and the limiting reduced free energy by 

F(/3) = lim FN(/3). (3.3) 
N---~ oo 

For a d-dimensional hypercubic lattice, Madras et al. [19] proved a number of 
rigorous results relating to F(/3). In particular they proved that the limiting free 
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energy (3.3) exists for - o e  ,.</3< oe and they showed that this function is convex, 
monotone, non-decreasing and continuous for - e~  </3 < cx~. If A0 and A0 are the 
growth constants for strong and weak embeddings, respectively, then 

F ( - o e )  = logA0 (3.4) 

and 

e(0)  = logA0, (3.5) 

although there is no proof that lim~--,_~o F(/3) = log A0. So log A0 and log A0 are, 
respectively, the lower and upper bounds for/3 < 0. Furthermore, Madras et al. [19] 
derived for/3 > 0 the following upper and lower bounds: 

( d -  1)/3<,.F(fl)<~F(O) + ( d -  1)/3, (3.6) 

where d is the dimension. Dividing by/3 and letting/3 go to infinity, gives 

lim F(/3)//3 = d - 1 (3.7) 

and, moreover, there is an asymptotic line 

. L(/3) = (d - 1)/3 + S (3.8) 

such that l i m ~  ~ [F(/3) - L(/3)] = 0. Physically S is interpreted as the reduced lim- 
iting entropy of the compact phase. A knowledge of the reduced limiting entropy 
and the dimension of the system gives the asymptotic behaviour of the reduced free 
energy. In fact it can be proved that 

i=1 

- ( d -  1 ) l o g ( d -  1). (3.9) 

So, in particular, for the square lattice (d = 2) 

(4C/re =)1.1666. . .  ~S~<1.386.. . ,  (3.10) 

where C is Catalan's constant, and for the simple cubic lattice (d = 3) 

1.673... ~<S~< 1.909. (3.11) 

Because of the convexity of the limiting reduced free energy, the lower bounds 
(3.10) (in d = 2) and (3.11) (in d = 3) of the asymptote are in fact the improved 
lower bounds for F(/3) and the estimates of [F(/3) - (d - 1)/3] for increasing value 
of/3 > 0 (see ref. [12]) suggest that S is close or equal to the lower bounds in (3.10) 
and (3.11), respectively. 

Numer i ca l  results 
This paragraph reviews the numerical results of the/3 dependence of the limiting 

free energy in two dimensions (square lattice). For more details and for the three- 
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dimensional case one should refer to ref. [12]. These estimates are based on the 
exact enumeration data derived by Sykes [19-23] and Martin [24] using the shadow 
method [25]. From these data, the partition function and consequently, the reduced 
free energy are computed for all N ~< 19. Finally, the limiting reduced free energy 
F(/3) is estimated using the ratio method and the Pad6 approximant  method,  and 
then compared with the analytical results described in the first part  of this section. 
Using the data above-mentioned, the reduced free energy FN(/3), defined in eq. 
(3.2), is calculated for all N ~< 19. The results are plotted in fig. 2 where the dotted 
lines are the analytical bounds (3.4), (3.5), (3.6) and (3.8) given above, and the 
numerical estimates used [26] are: logA0 = 1.334 + 0.002, log)~0 = 1.637 + 0.002. 
The reduced limiting free energy is the limit of  these curves and must  lie somewhere 
between the rigorous lower and upper bounds. From fig. 2 it is easy to see that  these 
curves are still outside the bounds hence considerable extrapolation is required to 
estimate F(/3), especially for large/3. The curves are almost constants and easier to 
extrapolate for negative/3, while, for increasing positive/3, the curves spread out. 
The estimates of  the limiting reduced free energy on the square lattice are tabulated 
in table 1. The estimation methods which have been used (ratio and Pad6) give satis- 
factory and consistent estimates of the F(/3) for/3 < 0 and for small positive/3. How- 
ever, both methods rapidly become less precise for larger values of/3, and for 
/3 ~> 1.5 they fail to provide estimates of any reliability. In section 4 a method  to 
improve these estimates for large/3 will be presented. 
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Table 1 
Estimates of the limiting free energy on square lattice trees. 

13 

Contact model Solvent model 

direct estimates indirect estimates direct estimates 

-4 .0  1.339 ± 0.002 1.339 ± 0.001 
-3 .5  1.342 ± 0.002 1.342 :t: 0.001 
-3 .0  1.348 ± 0.002 1.347 ± 0.001 
-2 .5  1.356 ± 0.002 1.356 ± 0.001 
-2 .0  1.371 ± 0.001 1.371 ± 0.001 
-1.5 1.396±0.001 1.396:t:0.001 0.7 ±0 .2  
-1 .0  1.439 ± 0.002 1.439 ± 0.001 1.0 ± 0.2 
-0.5 1.513 ± 0.001 1.513 ± 0.001 1.20 ± 0.04 

0 1.637 ± 0.002 1.638 ± 0.002 1.637 ± 0.002 
0.1 1.669 ± 0.002 1.670 ± 0.001 1.779 ± 0.001 
0.2 1.707 ± 0.002 1.707 ± 0.001 1.932 ± 0.001 
0.3 1.749 4- 0.002 1.749 ± 0.001 2.094 ± 0.001 
0.4 1.797 ± 0.003 1.797 ± 0.002 2.264 ± 9.001 
0.5 1.850 ± 0.005 1.851 ± 0.002 2.439 ± 0.001 
0.6 1.906 ± 0.006 1.909 ± 0.003 2.619 ± 0.001 
0.7 1.969 ± 0.007 1.971 ± 0.004 2.803 ± 0.001 
0.8 2.032 ± 0.009 2.036 ± 0.005 2.990 ± 0.001 
0.9 2.10 ± 0.02 2.12 ± 0.01 3.179 ± 0.001 
1.0 2.16 ± 0.04 2.20 ± 0.04 3.371 ± 0.001 
1.1 2.23 ± 0.04 2.27 ± 0.04 3.564 ± 0.001 
1.2 2.29 ± 0.07 2.35 ± 0.04 3.758 ± 0.001 
1.3 2.36 ± 0.10 2.43 ± 0.07 3.954 ± 0.001 
1.4 2.44 ±0.15 2.46 ±0.09 4.150±0.001 
1.5 2.50 ± 0.20 2.55 + 0.1 4.347 ± 0.00l 
1.6 2.62 ± 0.1 4.547 ± 0.001 
1.7 2.73 ± 0.2 4.745 ± 0.001 
1.8 2.82 ± 0.2 4.942 ± 0.001 
1.9 2,88 ± 0.2 5.141 ± 0.001 
2.0 3.0 ± 0.2 5.339 ± 0.001 
2.1 3.09 ± 0.2 5.545 ± 0.001 
2.2 3.16 ± 0,2 5.749 ± 0.001 
2.3 3.20 ± 0.2 5.954 ± 0.001 
2.4 3.30 ± 0.2 6.157 ± 0.001 
2.5 3.46 4- 0.2 6.334 ± 0.001 
3.0 3.7 ± 0.3 7.334± 0.001 
3.5 8.334 ± 0.001 
4.0 9.334 ± 0.001 

3.2. SPECIFIC HEAT AND CROSSOVER EXPONENT 

As can be seen in ref. [12] the limiting reduced free energy is very smoo th  and 
there is no indicat ion of  the collapse transit ion.  F(/3) is expected to be analytic for 
/3 ~< 0 and the collapse is believed to occur at some value of /3  =/3c > 0. In fact, 
because of  the at tractive interact ion e2,/3 mus t  be positive or zero. Unfor tuna te ly  
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there are no analytic results about the specific heat; the rigorous results for F(/3) 
do not give any proof of a collapse transition or information about the behaviour of 
the second derivative. Therefore, in order to investigate the possibility of a collapse 
transition, the specific heat has been studied numerically. 

The specific heat has been calculated following the definition of Chang and 
Shapir [10], 

d2Fg(/3) 
HN -- d~ 2 -- ((k 2) - ( k ) 2 ) / g .  (3.12) 

All the curves are dominated by a single sharp peak which increases smoothly and 
regularly in height as N increases [12]. Presumably this peak corresponds to the col- 
lapse transition. According to the finite size scaling theory [10], the height hN of 
the Nth peak should scale as 

hN " N ~¢° N'-+cx~, (3.13) 

where ao is the specific heat exponent and ¢o is the cross-over exponent, ao¢o can 
be estimated by calculating 

log(hu/hu-1) 
a0,NC0,U = l o g [ N / ( N -  1)] ' (3.14) 

which should approach ao¢o as N ~ ec. Using the hyperscaling relation, 

ao = 2 -  1/¢o, (3.15) 

¢o can be estimated by calculating 

¢0,N = (" log(hN/hN_!)_ .~, (3.16) 
\ l o g [ N / ( N -  1)]J 

which should approach ¢0 as N - ~  oc. Estimates of ¢0,N, together with the extrapo- 
lants, are plotted in ref. [12] as a function of 1IN. The best estimate for the square 
lattice is 

¢0 = 0.60 4- 0.03 (d = 2). (3.17) 

In three dimensions the specific heat has been studied on the simple cubic (sc), 
body centred cubic (bcc) and diamond (diam) lattices. The best estimate is 

¢o = 0.82 ± 0.03 (d = 3) (3.18) 

for the bcc lattice, though it is consistent with less well-converged results for the sc 
and diam lattice. 

Using finite size scaling theory, the critical temperature in two and three dimen- 
sions has been estimated in ref. [12]. 

4. Solvent  model  

In the solvent model the collapse is driven by the repulsive action of the solvent 
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on the polymer. The polymer is modelled by an animal or a c-animal or a tree, the 
solvent by the vacant lattice sites and the repulsive action on the polymer by the sol- 
vent is represented by the solvent perimeter bonds (2.3). As explained in section 2, 
four different representations of the perimeter model exist; they are the S, S', s, d. 

4.1. F R E E  E N E R G Y  

In this section we discuss some properties of the free energy for the solvent 
model. In order to compare this section to section 3 we will restrict the discussion to 
the solvent model on weakly embedded trees, but the following proofs apply, muta- 
tis mutandis, to the other models. The partition function of the s-model is 

Zu(/3,s) = ~ a(N, C,K)e (zu-2c-2N+2-2r)~ , (4.1) 
C,K 

where a(N, C, K) is the number of weak embedding trees with N sites, C cycles 
and K contacts and the limiting reduced free energy is 

F(/3) = lim N -l  log Zg (/3) . (4.2) 
N--+ oo 

Using concatenation arguments similar to those in ref. [19], Flesia et al. [15] have 
proved that: 

L E M M A  1 

The limu~o~ N -I logZu(/3) = F(/3) exists for -c~.~</3<cx~ and F(/3) is mono- 
tone, non-decreasing, convex and continuous for - c~  </3 < oo. 

And, if A0 is the growth constant for the weak embedding trees, then 

F(O) = logA0, (4.3) 

F(-oo) =0. 
Flesia et al. [15] also proved that: 

L E M M A  2 

For/3>0 

logA0 + 2(d - 1)/3~<F(/3)~<F(0) + 2(d - 1)/3 

and 

lira F(/3)//3 = 2(d - 1), 
fl--*" oo 

where A0 is the growth constant for the strong embedding trees. 

L E M M A  3 

For/3<0 

O,..<F(/3) ~< logAo. 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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Numerical results 
Because of  the equivalence between bond and site counting for a tree model, 

only the later model has been studied. 
Let us consider the square lattice. The reduced free energy on trees on the square 

lattice is calculated using the data of Sykes and Martin published in ref. [19] and it 
is plotted in fig. 3. In this graph for/3 > 0 the curves are nearly straight-lines with 
slope ~ 2 and the values of Fw(/3) decrease with increasing N. On the other hand, 
for/3 < 0, they are more spread out and the values OfFN (fl) increase with increasing 
N. At/3 ~ 1 they all cross. It should be noticed that, apart from the crossing point 
at/3 ~ 1, this graph seems to be closely similar in shape to the one for the contact- 
model. The numerical estimates of the limiting reduced free energy on the square 
lattice are given in table 1. The relation between the two models is pointed out in the 
section 4.2. 

4.2. RELATION BETWEEN SOLVENT MODEL A N D  CONTACT MODEL 

Flesia et al. [15] proved the following theorem: 
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Fig. 3. The reduced free energy, FN03), of the solvent model for trees on the square lattice for 
N = 4-19. Upper and lower bounds to F(~) are included. 
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THEOREM 1 

The limiting reduced free energy of the solvent model weak embedding in c-ani- 
mals is related to the limiting reduced free energy of the contact model in c-animals 
by the following relation: 

FC(/3,k) = (d - 1)/3 + FC(-½/3,s), (4.8) 

where Fc(/3, k) is the limiting reduced free energy for the contact model in c-ani- 
mals and FC(-½/3, s) is the limiting reduced free energy for the solvent model in c- 
animals. 

We point out that since 

FC(/3,k) = F°(/3,k) (4.9) 

[14], it follows using (4.8) and (4.9) that 

F c (/3, s) = F ° (/3, s), (4.10) 

where F°(/3, k) and F°(/3, s) are, respectively, the limiting reduced free energy for 
the contact model in trees and for the solvent model in trees. 

Theorem 1 is useful not only to clarify the relations existing between the mod- 
els, but also to improve the estimates of the free energy. In fact the solvent model 
can be useful to estimate the behaviour of the limiting reduced free energy of the 
contact model at large positive/3, and vice versa. For example: F°(/3 = 2, k) for the 
contact model in trees in two dimensions, has no reliable estimation, but this corre- 
sponds, in the solvent model, to F °(/3 = -1 ,  s) for which a reasonable estimate is 
available: F°(/3 = -1 ,  s) = 1.0 + 0.2. This gives for the contact model the value 
F°(/3 = 2, k) = 3.0 ± 0.2 which is inside the analytic bounds. 

In table 1 are tabulated the direct estimates of the limiting reduced free energy 
for the solvent model and the contact model in trees on the square lattice and the 
indirect estimates of the contact model in trees derived from relation (4.8). How- 
ever, for ease of presentation, not all the estimates of the free energy of the solvent 
model used to calculate the indirect estimates of the free energy of the contact 
model are included in table 1. The direct and indirect estimates are in very good 
agreement. It should be noticed that for values of/3 >/2.5 for the solvent model, the 
asymptotic region is already reached. In fact using the relation (4.8), the corre- 
sponding value in the contact model, 1.334, is the lower bound log A0. 

A similar analysis applies in three dimensions for the simple cubic lattice. 

4.3. SPECIFIC HEAT AND CROSSOVER EXPONENT 

The specific heat for the square lattice is plotted in fig. 4; the curves for different 
N have the same shape, but different size than those for the contact model, and 
this time, as expected, the peaks appear for negative values of/3. The critical tem- 
perature of the solvent model for trees is related to the critical temperature of the 
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Fig. 4. The specific heat, H~¢ (~), for the solvent model in trees on the square lattice for N = 4-19. 

contact model for trees by the relation (4.8). Moreover, because of this relation 
and the hyperscaling relation, the crossover exponent q5 is the same in the two mod- 
els. 

4.4. RELATION BETWEEN SOLVENT MODEL AND CYCLE-MODEL 

Similarly to theorem 1, Flesia et al. [15] proved the following theorems: 

THEOREM 2 

The limiting reduced free energy of the solvent model in animals strong embed- 
dings site counting is related to the limiting reduced free energy for the cycle-model 
animal strong embeddings site counting by the following relation: 

F(/3, C) = ( d -  1)~3 + F(-½/3, S) .  (4.11) 

THEOREM 3 

The limiting reduced free energy of the solvent model in animals strong embed- 
dings and bond counting is related to the limiting reduced free energy for the cycle- 
model animals strong embeddings and bond counting by the following relation: 
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Table 2 
Summary of the models. 

Animals c-animals Trees 

C, C', c, d 
k,k' k k 
S, S',s,s' s,s' s,s' 

- ~ / 3 + F  - ,S' . (4.12) 

The same comments as for theorem 1 about improving numerical estimates can be 
made again here and, in the case of the bond counting model, the estimates are 
even better because now/3 is related to - /3 /2d  instead of -/3/2 and so they also 
improve with dimensionality. 

5. Summary and conc lus ion  

in this paper the collapse transition of branched polymers has been investi- 
gated. Several lattice models have been presented in section 2 and two of those mod- 
els have been described in more detail in sections 3 and 4. Relations between 
models have been demonstrated analytically and numerically investigated in sec- 
tion 4.2. These relations have also been used to improve the numerical estimates of 
the limiting free energy and to find the critical temperature and the crossover expo- 
nent (sections 4.2 and 4.3). A summary of the models is presented in table 2. 
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